티스토리 뷰
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
import tensorflow as tf
from collections import deque
import random
import math
import pandas_datareader as data_reader
import numpy as np
from tqdm import tqdm
class Trader:
def __init__(self, state_size, action_space=3, model_name='AITrader'):
self.state_size = state_size
self.action_space = action_space
self.memory = deque(maxlen=2000)
self.inventory = []
self.model_name = model_name
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_final = 0.01
self.epsilon_decay = 0.995
def model_builer(self):
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(units=32, activation='relu', input_dim=self.state_size))
model.add(tf.keras.layers.Dense(units=64, activation='relu'))
model.add(tf.keras.layers.Dense(units=128, activation='relu'))
model.add(tf.keras.layers.Dense(units=self.action_space, activation='linear'))
model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=0.001))
return model
def trade(self, state, model):
if random.random() <= self.epsilon:
return random.randrange(self.action_space)
actions = model.predict(state)
return np.argmax(actions[0])
def batch_train(self, batch_size, model):
batch = []
for i in range(len(self.memory) - batch_size + 1, len(self.memory)):
batch.append(self.memory[i])
for state, action, reward, next_state, done in batch:
reward = reward
if not done:
reward = reward + self.gamma * np.amax(model.predict(next_state)[0])
target = model.predict(state)
target[0][action] = reward
model.fit(state, target, epochs=1, verbose=0)
if self.epsilon > self.epsilon_final:
self.epsilon *= self.epsilon_decay
class Trading:
@staticmethod
def sigmoid(x):
return 1 / (1 + math.exp(-x))
@staticmethod
def stocks_price_format(n):
if n < 0:
return "- $ {0:2f}".format(abs(n))
else:
return "$ {0:2f}".format(abs(n))
@staticmethod
def dataset_loader(stock_name):
dataset = data_reader.DataReader(stock_name, data_source="yahoo")
start_date = str(dataset.index[0]).split()[0]
end_date = str(dataset.index[-1]).split()[0]
close = dataset['Close']
return close
def state_creator(self, data, timestep, window_size):
starting_id = timestep - window_size + 1
if starting_id >= 0:
windowed_data = data[starting_id: timestep + 1]
else:
windowed_data = - starting_id * [data[0]] + list(data[0:timestep + 1])
state = []
for i in range(window_size - 1):
state.append(self.sigmoid(windowed_data[i + 1] - windowed_data[i]))
return np.array([state])
"""
hook method
"""
def transaction(self, target):
stock_name = target
data = self.dataset_loader(stock_name)
window_size = 10
episodes = 1000
batch_size = 32
data_samples = len(data) - 1
trader = Trader(window_size)
model = trader.model_builer()
print('==== Model Summary ===')
print(model.summary())
for episode in range(1, episodes + 1):
print("Episode: {}/{}".format(episode, episodes))
state = self.state_creator(data, 0, window_size + 1)
total_profit = 0
trader.inventory = []
for t in tqdm(range(data_samples)):
action = trader.trade(state, model)
next_state = self.state_creator(data, t + 1, window_size + 1)
reward = 0
if action == 1: # Buying
trader.inventory.append(data[t])
print("AI 트레이더 매수: ", self.stocks_price_format(data[t]))
elif action == 2 and len(trader.inventory) > 0: # Selling
buy_price = trader.inventory.pop(0)
reward = max(data[t] - buy_price, 0)
total_profit += data[t] - buy_price
print("AI 트레이더 매도: ", self.stocks_price_format(data[t]),
"이익: " + self.stocks_price_format(data[t] - buy_price))
if t == data_samples - 1:
done = True
else:
done = False
trader.memory.append((state, action, reward, next_state, done))
state = next_state
if done:
print('#################')
print('총이익: {}'.format(total_profit))
print('#################')
if len(trader.memory) > batch_size:
trader.batch_train(batch_size, model)
if episode % 10 == 0:
trader.model.save('ai_trader_{}.h5'.format(episode))
if __name__ == '__main__':
trading = Trading()
trading.transaction('AAPL')
|
cs |
'5. 파이썬' 카테고리의 다른 글
[머신러닝] alpha 설명 이미지 (0) | 2020.05.10 |
---|---|
[플라스크] 계산기 템플릿 (0) | 2020.05.09 |
[텐서플로] 패션 mnist 데이터셋 을 이용한 모델링및 예측 하기 (0) | 2020.05.09 |
[사이킷런] 램가격 모델링 (0) | 2020.05.09 |
[Python] 벅스뮤직, 네이버 영화 웹크롤링 예제 (1) | 2020.05.09 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- Eclipse
- terms
- JPA
- springMVC
- tensorflow
- jQuery
- SpringBoot
- Algorithm
- Git
- Mlearn
- Django
- docker
- AWS
- SQLAlchemy
- database
- mariadb
- COLAB
- JUnit
- Oracle
- maven
- ERD
- Java
- intellij
- React
- vscode
- Mongo
- nodejs
- FLASK
- Python
- KAFKA
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
글 보관함