티스토리 뷰
calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
class Calculator:
def create_adder(self):
w1 = tf.placeholder(tf.float32, name='w1')
w2 = tf.placeholder(tf.float32, name='w2')
feed_dict = {'w1': 8.0, 'w2': 2.0}
r = tf.add(w1, w2, name='op_add')
sess = tf.Session()
_ = tf.Variable(initial_value='fake_variable')
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
result = sess.run(r, {w1: feed_dict['w1'], w2: feed_dict['w2']})
print('덧셈결과: {}'.format(result))
saver.save(sess, './calc_add_model/model', global_step=1000)
def create_subber(self):
w1 = tf.placeholder(tf.float32, name='w1')
w2 = tf.placeholder(tf.float32, name='w2')
feed_dict = {'w1': 8.0, 'w2': 2.0}
r = tf.subtract(w1, w2, name='op_sub')
sess = tf.Session()
_ = tf.Variable(initial_value='fake_variable')
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
result = sess.run(r, {w1: feed_dict['w1'], w2: feed_dict['w2']})
print('뺄셈결과: {}'.format(result))
saver.save(sess, './calc_sub_model/model', global_step=1000)
def create_multifier(self):
w1 = tf.placeholder(tf.float32, name='w1')
w2 = tf.placeholder(tf.float32, name='w2')
feed_dict = {'w1': 8.0, 'w2': 2.0}
r = tf.multiply(w1, w2, name='op_mul')
sess = tf.Session()
_ = tf.Variable(initial_value='fake_variable')
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
result = sess.run(r, {w1: feed_dict['w1'], w2: feed_dict['w2']})
print('곱셈결과: {}'.format(result))
saver.save(sess, './calc_mul_model/model', global_step=1000)
def create_divder(self):
w1 = tf.placeholder(tf.float32, name='w1')
w2 = tf.placeholder(tf.float32, name='w2')
feed_dict = {'w1': 8.0, 'w2': 2.0}
r = tf.divide(w1, w2, name='op_div')
sess = tf.Session()
_ = tf.Variable(initial_value='fake_variable')
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
result = sess.run(r, {w1: feed_dict['w1'], w2: feed_dict['w2']})
print('나눗셈결과: {}'.format(result))
saver.save(sess, './calc_div_model/model', global_step=1000)
def service(num1, num2, opcode):
tf.reset_default_graph()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.import_meta_graph(f'model/calc_{opcode}_model/model-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint(f'model/calc_{opcode}_model'))
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name('w1:0')
w2 = graph.get_tensor_by_name('w2:0')
feed_dict = {w1: float(num1), w2: float(num2)}
for key in feed_dict.keys():
print(key, ':', feed_dict[key])
op_to_restore = graph.get_tensor_by_name(f'op_{opcode}:0')
result = sess.run(op_to_restore, feed_dict)
print('텐서가 계산한 결과: {}'.format(result))
return result
if __name__ == '__main__':
c = Calculator()
# c.create_adder()
# c.create_subber()
# c.create_multifier()
c.create_divder()
|
cs |
index.html
1
2
3
4
5
6
7
8
9
10
11
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>머신러닝 플라스크</title>
</head>
<body>
<h1>인덱스</h1>
<a href='/move/calculator'>계산기</a>
</body>
</html>
|
cs |
calculator.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>계산기</title>
</head>
<body>
<form action="/calc" method="post">
첫번째 수: <br>
<input type="text" name="num1"> <br>
두번째 수: <br>
<input type="text" name="num2"> <br>
<select name="opcode" id="">
<option value="add">+</option>
<option value="sub">-</option>
<option value="mul">*</option>
<option value="div">/</option>
</select>
<br>
<input type="submit" value="SUBMIT">
</form>
{% if result %}
<p>결과: {{result}}</p>
{% endif %}
<a href="/">홈으로</a>
</body>
</html>
|
cs |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
from flask import Flask
from flask import render_template, request, jsonify
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/move/calculator')
def move():
return render_template('calculator.html')
@app.route('/calc', methods=["POST"])
def calc():
num1 = request.form['num1']
num2 = request.form['num2']
opcode = request.form['opcode']
print('넘어온 num1 값: {}'.format(num1))
print('넘어온 num2 값: {}'.format(num2))
print('넘어온 연산자 값: {}'.format(opcode))
result = int(num1) + int(num2)
render_params = {}
render_params['result'] = result
return render_template('calculator.html', **render_params)
if __name__ == '__main__':
app.debug = True
app.run()
|
cs |
'5. 파이썬' 카테고리의 다른 글
딥러닝/2020/텔아비브/ 코랩(Colab) 머신러닝 개발 설정하기 (0) | 2020.05.22 |
---|---|
[텐서플로] 경사하강법 그래프 보기 (0) | 2020.05.16 |
[텐서플로2] MNIST 예제 tf2_function.py (0) | 2020.05.14 |
[텐서플로2] 회귀분석 예제 regression.py (0) | 2020.05.14 |
[텐서플로] 모델의 저장과 로드 save_load.py (0) | 2020.05.14 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- SpringBoot
- intellij
- Eclipse
- Mongo
- Python
- Java
- Django
- Algorithm
- Git
- JUnit
- vscode
- tensorflow
- mariadb
- COLAB
- database
- ERD
- Mlearn
- React
- JPA
- springMVC
- docker
- FLASK
- SQLAlchemy
- jQuery
- nodejs
- Oracle
- KAFKA
- maven
- terms
- AWS
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함