티스토리 뷰
Perceptron
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
import numpy as np
class Perceptron:
def __init__(self, eta= 0.01, n_iter = 50, random_state=1):
self.eta = eta
self.n_iter = n_iter
self.random_state = random_state
def fit(self, X, y):
regen = np.random.RandomState(self.random_state)
self.w_ = regen.normal(loc = 0.0, scale=0.01, size= 1 + X.shape[1])
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi, target in zip(X, y):
update = self.eta * (target - self.predict(xi))
self.w_[1:] += update * xi
self.w_[1:] += update
errors += int(update != 0.0)
self.errors_.append(errors)
return self
def net_input(self, X):
""" 최종 입력 계산"""
return np.dot(X, self.w_[1:]) + self.w_[0]
def predict(self, X):
return np.where(self.net_input(X) >= 0.0, 1, -1)
|
cs |
Adaline
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
import numpy as np
class Adaline():
def __init__(self, eta=0.01, n_iter=50, random_state=None, shuffle=True):
self.eta = eta
self.n_iter = n_iter
self.random_state = random_state
self.shuffle = shuffle
def fit(self, X, y):
self._initialize_weights(X.shape[1])
self.cost_ = []
for i in range(self.n_iter):
if self.shuffle:
X, y = self._shuffle(X,y)
cost = []
for xi, target in zip(X, y):
cost.append(self._update_weights(xi, target))
avg_cost = sum(cost) / len(y)
self.cost_.append(avg_cost)
return self
def partial_fit(self, X, y):
"""
가중치를 다시 초기화하지 않고 훈련 데이터를 학습
"""
if not self.w_initialized:
self._initialize_weights(X.shape[1])
if y.ravel().shape[0] > 1:
for xi, target in zip(X, y):
self._update_weights(xi, target)
else:
self._update_weights(X, y)
return self
def _shuffle(self, X, y):
"""훈련 데이터 섞기"""
r = self.rgen.permutation(len(y))
return X[r], y[r]
def _initialize_weights(self, m):
"""랜덤한 작은 수로 가중치를 초기화 """
self.rgen = np.random.RandomState(self.random_state)
self.w_ = self.rgen.normal(loc = 0.0, scale = 0.01, size = 1 + m)
self.w_initialized = True
def _update_weights(self, xi, target):
"""아달린 학습 규칙을 적용하여 가중치를 업데이트 함"""
# eta : 학습률 0.0 ~ 1.0
output = self.activation(self.net_input(xi))
error = (target - output)
self.w_[1:] += self.eta * xi.dot(error)
self.w_[0] += self.eta * error
cost = 0.5 * error ** 2
return cost
def net_input(self, X):
"""최종 입력 계산"""
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, X):
"""선형 활성화 계산"""
return X
def predict(self, X):
"""단위 계단 함수를 사용하여 클래스 레이블을 반환"""
return np.where(self.activation(self.net_input(X)) >= 0.0, 1, -1)
|
cs |
'5. 파이썬' 카테고리의 다른 글
머신러닝/--// Titanic user_dto.py (0) | 2020.10.21 |
---|---|
Flask config.py (0) | 2020.10.07 |
REST API, Database Connection, os.path.dirname(__file__) (0) | 2020.10.05 |
머신러닝/--/하마/ 타이타닉 컬럼 (Feature) (0) | 2020.09.23 |
선형대수의 데이터 유형과 axis 이해 (0) | 2020.09.22 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- SQLAlchemy
- AWS
- Django
- database
- FLASK
- React
- Java
- springMVC
- SpringBoot
- ERD
- JUnit
- maven
- Mlearn
- docker
- Oracle
- terms
- mariadb
- Algorithm
- JPA
- Mongo
- COLAB
- Python
- Eclipse
- tensorflow
- KAFKA
- vscode
- jQuery
- nodejs
- Git
- intellij
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
글 보관함