티스토리 뷰
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | import tensorflow as tf import numpy as np import matplotlib.pyplot as plt rng = np.random # parameter learning_rate = 0.01 training_epochs = 1000 display_step = 50 # Training Data train_X = np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1]) train_Y = np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0] # tf Graph Input X = tf.placeholder("float") Y = tf.placeholder("float") # Set model weights W = tf.Variable(rng.randn(), name='weight') b = tf.Variable(rng.randn(), name='bias') # construct a Linear Model pred = tf.add(tf.multiply(X, W), b) # Y = WX + b # Mean squared error cost = tf.reduce_sum(tf.pow(pred-Y, 2)) / (2*n_samples) # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() # Start Training with tf.Session() as sess: sess.run(init) # Fit all training data for epoch in range(training_epochs): for(x, y) in zip(train_X, train_Y): sess.run(optimizer, {X: x, Y: y}) # Display logs per epoch step if(epoch+1) % display_step == 0: c = sess.run(cost, {X: train_X, Y: train_Y}) print("Epoch: ", '%0.4d' % (epoch+1), "cost = ", "{:.9f}".format(c), "W=", sess.run(W), "b= ", sess.run(b)) print("Optimization Finished ") training_cost = sess.run(cost, {X: train_X, Y: train_Y}) print("Training_Cost = ", training_cost, "W = ", sess.run(W), "b= ", sess.run(b),'\n') # Graphic display plt.plot(train_X, train_Y, 'ro', label = 'Original Data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label = 'Fitted Line') plt.legend() plt.show() | cs |
'5. 파이썬' 카테고리의 다른 글
파이썬/텐서플로/2020-06-/ 셀렙 얼굴 맞추기 : 채닝 테이텀 #41 (0) | 2020.06.06 |
---|---|
83536 fashion_checker.py (0) | 2020.06.02 |
83536 코스피 Trader.py (0) | 2020.06.02 |
[Telaviv] 뉴스 데이터 수집 (0) | 2020.05.30 |
HanBert 네이버 긍정부정 댓글 판단 (10) | 2020.05.30 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- Algorithm
- Java
- Django
- Git
- jQuery
- JUnit
- Mongo
- JPA
- tensorflow
- intellij
- KAFKA
- SpringBoot
- COLAB
- SQLAlchemy
- Eclipse
- docker
- nodejs
- springMVC
- ERD
- Mlearn
- terms
- FLASK
- React
- maven
- database
- Python
- AWS
- vscode
- mariadb
- Oracle
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함