티스토리 뷰
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import numpy as np
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
class Fashion:
def modeling(self) -> object:
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) \
= fashion_mnist.load_data()
'''
print('트레인 행 : %d, 열 : %d, ' % (train_images.shape[0], train_images.shape[1]))
print('테스트 행 : %d, 열 : %d, ' % (test_images.shape[0], test_images.shape[1]))
실행결과
트레인 행 : 60000, 열 : 28,
테스트 행 : 10000, 열 : 28,
plt.figure()
plt.imshow(train_images[3])
plt.colorbar()
plt.grid(False)
plt.show()
'''
train_images / 255.0
test_images / 255.0
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5, i + 1)
plt.xticks([])
plt.ylabel([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])
# plt.show()
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
])
"""
relu ( Recitified Linear Unit 정류한 선형 유닛)
미분 가능한 0과 1사이의 값을 갖도록 하는 알고리즘
softmax
nn (neural network )의 최상위층에서 사용되며
classfication 을 위한 function
결과를 확률값으로 해석하기 위한 알고리즘
"""
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 모델 학습
model.fit(train_images, train_labels, epochs=5)
# 모델 평가
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('테스트 정확도 : ', test_acc)
# 테스트 정확도 : 0.8075
# 모델 예측
predictions = model.predict(test_images)
print(predictions[0])
'''
[3.0462004e-11 1.9878127e-10 2.8517895e-26 5.5107477e-16 2.5601745e-17
2.6590964e-01 1.6214647e-14 3.0300125e-02 1.4937678e-08 7.0379025e-01]
'''
return [predictions, test_labels, test_images]
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array[i], true_label[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
if __name__ == '__main__':
f = Fashion()
model = f.modeling()
predictions = model[0]
test_labels = model[1]
img = model[2]
i = 5
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, img)
plt.subplot(1,2,2)
plot_value_array(i, predictions, test_labels)
plt.show()
|
cs |
'5. 파이썬' 카테고리의 다른 글
[플라스크] 계산기 템플릿 (0) | 2020.05.09 |
---|---|
[텐서플로] 애플 주식 트레이딩 학습 (0) | 2020.05.09 |
[사이킷런] 램가격 모델링 (0) | 2020.05.09 |
[Python] 벅스뮤직, 네이버 영화 웹크롤링 예제 (1) | 2020.05.09 |
파이썬/자연어/2020-05-09/ 삼성 2018 보고서 분석하기 (0) | 2020.05.09 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- ERD
- Mongo
- database
- intellij
- SQLAlchemy
- maven
- COLAB
- Algorithm
- Python
- Git
- FLASK
- springMVC
- Java
- AWS
- docker
- nodejs
- Oracle
- vscode
- mariadb
- jQuery
- Eclipse
- SpringBoot
- React
- JPA
- terms
- JUnit
- Django
- KAFKA
- tensorflow
- Mlearn
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함