import numpy as np import tensorflow as tf from collections import deque import random import math import pandas_datareader as data_reader import numpy as np from tqdm import tqdm class AI_Trader: def __init__(self, state_size, action_space=3, model_name='AITrader'): self.state_size = state_size self.action_space = action_space self.memory = deque(maxlen=2000) self.inventory = [] self.model_name..

pip install tensorflow conda update conda ANACONDA PROMPT 로 이동한다. python -m pip install --upgrade pip pip install --upgrade tensorflow 기존에 텐서플로우가 설치되어 있으면 --upgrade 를 추가한다. 설치된 텐서플로우 버전을 보기 위한 코드다. ***.py 파일을 생성 후 아래와 같은 코드를 입력한다. import tensorflow as tf tf.__version__ import tensorflow as tf print tf.VERSION 변환 후 변환된 코드의 패턴은 다음과 같다: 변수는 파이썬 지역 객체다. forward 함수는 여전히 필요한 계산을 정의한다. sess.run 호출은 for..
CarCrawling.py 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 import requests from bs4 import BeautifulSoup import pandas as pd num = 0 car = [] carlist = [] for k in range(1,184): source = requests.get( "https://auto.naver.com/search/detailSearch.nhn?kor_all=true&kor=16&kor=12&k..

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 12..
1234567891011121314151617181920212223242526272829303132333435363738394041424344import tensorflow as tffrom tensorflow import kerasimport matplotlib.pyplot as pltimport numpy as npfrom mnist_test.number_checker import NumberCheckerfrom mnist_test.fashion_checker import FashionChecker class FashionChecker: def __init__(self): self.class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat..
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt rng = np.random# parameterlearning_rate = 0.01training_epochs = 1000display_step = 50# Training Datatrain_X = np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1])train_Y = np.asar..
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140import pandas as pdimport plotly.offline as offlineimport plotly.graph_objs as goimpor..

1 !pip install transformers cs 1 2 3 4 5 6 7 8 9 import tensorflow as tf import numpy as np import pandas as pd from transformers import * import json import numpy as np import pandas as pd from tqdm import tqdm import os cs 1 2 # 네이버 영화 감성분석 데이터 다운로드 !git clone https://github.com/e9t/nsmc.git cs 1 os.listdir('nsmc') cs 1 2 3 4 # 딥러닝 훈련에 사용 할 train 데이터와 test 데이터를 pandas dataframe 형식으로 불러옵니다. tra..

from google.colab import auth auth.authenticate_user() from google.colab import drive drive.mount('/content/gdrive') root_dir = "/content/gdrive/My Drive/" import pandas as pd df = pd.read_csv(root_dir+'example_air_passengers.csv') 1 2 3 # Colab 서버 스펙 확인 from tensorflow.python.client import device_lib device_lib.list_local_devices() cs 1 2 import platform platform.platform() cs 'Linux-4.19.104+-..
- Total
- Today
- Yesterday
- springMVC
- database
- jQuery
- terms
- SpringBoot
- ERD
- Oracle
- intellij
- Django
- Mlearn
- mariadb
- SQLAlchemy
- Mongo
- Python
- KAFKA
- FLASK
- AWS
- nodejs
- React
- JPA
- docker
- tensorflow
- Algorithm
- COLAB
- JUnit
- Eclipse
- vscode
- maven
- Git
- Java
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |